Å·²©abg

ѧÔÚÅ·²©abg

ÄúµÄλÖ㺠Ê×Ò³ ¡¤ ѧÔÚÅ·²©abg ¡¤ ѧÊõ»î¶¯ ¡¤ ÕýÎÄ

ÀíѧԺÇàÄêѧÊõÂÛ̳µÚ277ÆÚ¡ª¡ªMeromorphic solutions of higher order delay differential equations

Ö÷½²ÈË :²ÜÍ¢±ò ËùÔÚ :½ÌÈýÂ¥326¿ÎÌà ×îÏÈʱ¼ä : 2023-05-27 09:00:00

±¨¸æÎÊÌ⣺Meromorphic solutions of higher order delay differential equations

±¨¸æÈË£º²ÜÍ¢±ò½ÌÊÚ

Ö÷³ÖÈË£ºÁõ־ѧ

±¨¸æÊ±¼ä£º2023Äê05ÔÂ27ÈÕ9:00

ËùÔÚ£ºÅ·²©abg½ÌÈýÂ¥326¿ÎÌÃ

±¨¸æÕªÒª£ºWe study the higher order delay differential equations $$w(z + 1)?w(z?1) + a(z)w^{(k)}(z) w(z) = R(z, w(z)),$$ and $$w(z + 1) + a(z)w^{(k)}(z)w(z) = R(z, w(z)),$$ where $k$ is a positive integer, $a(z)$ is a rational function and $R(z, w)$ is rational in $w$ with rational coefficients. We obtain necessary conditions on the degree of $R(z, w)$ for these delay differential equations to admit a subnormal transcendental meromorphic solution. These results generalize some of the previous results by Halburd and Korhonen [Proceeding of AMS 2017] to higher order case. Some examples are given to support our conclusions. This is a joint work with Prof. Korhonen and Dr. Yu Chen.

±¨¸æÈËÏÈÈÝ£º

²ÜÍ¢±ò£¬ÄУ¬Äϲý´óѧ½ÌÊÚ¡¢²©Ê¿Éúµ¼Ê¦¡¢¸Ó½­ÌØÆ¸½ÌÊÚ¡£µ£µ±½­Î÷Ê¡Êýѧ»á³£ÎñÀíÊ£¬ÈëÑ¡½­Î÷Ê¡ÓÅÒìÇàÄêÈ˲ÅÍýÏ룬¶«·ÒÀ¼´óѧ»á¼ûѧÕß(2014.06-2015.05)¡£2007Äê»ñɽ¶«´óѧ²©Ê¿Ñ§Î»¡£ÏÖÔÚ¸ÐÐËȤÓÚ¸´ÆÊÎöÖÐNevanlinnaÀíÂÛ¡¢ÊýÂÛÖÐDiophantineÆÈ½üÀíÂÛ¡¢¸´Î¢·ÖÀíÂÛ¡¢tropical´úÊý¼¸ºÎµÈÁìÓòÑо¿¡£Ñо¿Ð§¹ûÔÚ¡¶Bull. Sci. Math.¡·¡¢¡¶Israel J. Math.¡·¡¢ ¡¶Ann. Mat. Pur. Appl.¡·¡¢¡¶Ann. Acad. Sci. Fenn. Math.¡·¡¢¡¶Comptes Rend us Mathematique¡·¡¢ ¡¶Öйú¿ÆÑ§:Êýѧ¡·µÈº£ÄÚÍâÖøÃûÊýѧÆÚ¿¯ÉÏÈÎÃü½ÒÏþ 80 ¶àƪ¸ßˮƽµÄѧÊõÂÛÎÄ£¨ÆäÖÐ SCI ÊÕ¼ 60 ¶àƪ£©¡£Ôø»ñµÃ¹ú¼Ò¼¶½ÌѧЧ¹û½±£¨2018Ä꣩ºÍ½­Î÷Ê¡¸ßµÈѧÐ £¿Æ¼¼Ð§¹û½±£¨2011Ä꣩¡£µ£µ±µÂ¹ú¡¶Zentralblatt MATH.¡·ºÍÃÀ¹ú¡¶Mathematical Reviews¡·Ì¸ÂÛÔ±¡¢¹ú¼ÊÔÓÖ¾¡¶Differential Equations & Applications¡·ºÍ¡¶Äϲý´óѧѧ±¨£¨Àí¿Æ°æ£©¡·±àί¡£Ö÷³ÖÁ˹ú¼Ò×ÔÈ»¿ÆÑ§»ù½ð£¨ÃæÉÏ¡¢µØÇø¡¢ÇàÄ꣩¼°Ê¡²¿¼¶¿ÆÑлù½ð¹²10¶àÏî¡£¹²×÷ÓýÁË20¶àλ˶ʿºÍ²©Ê¿Ñо¿Éú¡£

µçÄÔ°æ

¡¾ÍøÕ¾µØÍ¼¡¿¡¾sitemap¡¿